单个Prometheus Server可以轻松的处理数以百万的时间序列。当然根据规模的不同的变化,Prometheus同样可以轻松的进行扩展。这部分将会介绍利用Prometheus的联邦集群特性,对Prometheus进行扩展。
使用联邦集群
Prometheus支持使用联邦集群的方式,对Prometheus进行扩展。对于大部分监控规模而言,我们只需要在每一个数据中心(例如:EC2可用区,Kubernetes集群)安装一个Prometheus Server实例,就可以在各个数据中心处理上千规模的集群。同时将Prometheus Server部署到不同的数据中心可以避免网络配置的复杂性。
如上图所示,在每个数据中心部署单独的Prometheus Server用于采集当前数据中心监控数据。并由一个中心的Prometheus Server负责聚合多个数据中心的监控数据。
每一个Prometheus Server实例包含一个/federate接口,用于获取一组指定的时间序列的监控数据。因此在中心Prometheus Server中只需要配置一个采集任务用于从其他Prometheus Server中获取监控数据。
1 | scrape_configs: |
通过params可以用于控制Prometheus Server向Target实例请求监控数据的URL当中添加请求参数。例如:
1 | "http://192.168.77.11:9090/federate?match[]={job%3D"prometheus"}&match[]={__name__%3D~"job%3A.*"}&match[]={__name__%3D~"node.*"}" |
通过URL中的match[]参数指定我们可以指定需要获取的时间序列。match[]参数必须是一个瞬时向量选择器,例如up或者{job=”api-server”}。配置多个match[]参数,用于获取多组时间序列的监控数据。
horbor_labels配置true可以确保当采集到的监控指标冲突时,能够自动忽略冲突的监控数据。如果为false时,prometheus会自动将冲突的标签替换为”exported_
功能分区
而当你的监控大道单个Prometheus Server无法处理的情况下,我们可以在各个数据中心中部署多个Prometheus Server实例。每一个Prometheus Server实例只负责采集当前数据中心中的一部分任务(Job),例如可以将应用监控和主机监控分离到不同的Prometheus实例当中。
假如监控采集任务的规模继续增大,通过功能分区的方式可以进一步细化采集任务。对于中心Prometheus Server只需要从这些实例中聚合数据即可。
功能分区,即通过联邦集群的特性在任务级别对Prometheus采集任务进行划分,以支持规模的扩展。
水平扩展
另外一种极端的情况,假如当单个采集任务的量也变得非常的大,这时候单纯通过功能分区Prometheus Server也无法有效处理。在这种情况下,我们只能考虑在任务(Job)的实例级别进行水平扩展。将采集任务的目标实例划分到不同的Prometheus Server当中。
如上图所示,将统一任务的不同实例的监控数据采集任务划分到不同的Prometheus实例。通过relabel设置,我们可以确保当前Prometheus Server只收集当前采集任务的一部分实例的监控指标。
1 | global: |
并且通过当前数据中心的一个中心Prometheus Server将监控数据进行聚合到任务级别。
1 | - scrape_config: |
水平扩展,即通过联邦集群的特性在任务的实例级别对Prometheus采集任务进行划分,以支持规模的扩展。